Search results for "phase transitions"
showing 10 items of 65 documents
Screening Order–Disorder Phase Transition in 1-D Perovskite-like Crystals of [Azetidinium]CdBr3
2022
In search for new polar compounds, we have synthesized the organic–inorganic hybrid [C3H8N]CdBr3 (AZECdBr3). This is a bromide analog of [C3H8N]CdCl3, which has been studied by us earlier. The chloride compound exhibited ferroelectric properties, so it seemed reasonable to check the properties of AZECdBr3. The AZECdBr3 crystals reveal three phase transitions (PTs): the first one (I → II) of the second order at 437.0/436.7 K (heating/cooling), the next (also of the second order) at 231.0 K (II → III), and the last one (classified as a first-order transition) at 197.0/194.0 K (III → IV). On the basis of the DSC data, the thermodynamic parameters have been estimated. The single-crystal X-ray m…
Unprecedented multi-stable spin crossover molecular material with two thermal memory channels.
2013
et al.
Identifying Early Warning Signals for the Sudden Transition from Mild to Severe Tobacco Etch Disease by Dynamical Network Biomarkers
2019
This article belongs to the Special Issue The Complexity of the Potyviral Interaction Network.
Phase Transitions of BiVO4 under High Pressure and High Temperature
2022
We have studied the occurrence of phase transitions in two polymorphs of BiVO4 under high-pressure and high-temperature conditions by means of X-ray diffraction measurements. The fergusonite polymorph undergoes a phase transition at 1.5(1) GPa and room temperature into a tetragonal scheelite-type structure. The same transition takes place at 523(1) K and ambient pressure. A second phase transition takes place at room temperature under compression at 16(1) GPa. The transition is from the tetragonal scheelite structure to a monoclinic structure (space group P21/c). All observed phase transitions are reversible. The zircon polymorph counterpart also transforms under compression into the scheel…
Structural and vibrational behavior of cubic Cu1.80(3)Se cuprous selenide, berzelianite, under compression
2020
[EN] We have performed an experimental study of the crystal structure and lattice dynamics of cubic Cu1.80(3)Se at ambient temperature and high pressures. Two reversible phase transitions were found at 2.9 and 8.7 GPa. The indexation of the angle-dispersive synchrotron x-ray diffraction patterns suggests a large orthorhombic cell and a monoclinic cell for the high-pressure phases. Raman measurements provide additional information on the local structure. The compressibility of the three ambient temperature phases has been determined and compared to that of other sulphides and selenides.
Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content
1999
Abstract An extensive investigation of the temperature dependence of Raman spectra has been carried out on WO 3 powders from room temperature to 800°C. In particular the orthorhombic-to-tetragonal phase transition occurring at about 740°C has been studied for the first time. The Raman active mode at 710 cm −1 of the orthorhombic phase disappears from the spectrum at temperature below the phase transition point and the Raman activity in the tetragonal phase results very low. A comparative study of hydrogenated tungsten bronzes H x WO 3 ( x ≤0.23), where the same transition sequence is driven by an increase of the proton concentration from x =0 to 0.23, reveals similar behaviour of the high f…
In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles
2016
We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compressi…
On critical properties of the Berry curvature in the Kitaev honeycomb model
2019
We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter space includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. The Berry curvature in itself exhibits no singularities at criticality, nevertheless it distingui…
Wave-Vector Dependence of the Dynamics in Supercooled Metallic Liquids
2020
Physical review letters 125(5), 055701 (2020). doi:10.1103/PhysRevLett.125.055701
Thermodynamic, dynamic and transport properties of quantum spin liquid in herbertsmithite from experimental and theoretical point of view
2019
In our review we focus on the quantum spin liquid, defining the thermodynamic, transport and relaxation properties of geometrically frustrated magnets (insulators) represented by herbertsmithite $\rm ZnCu_{3}(OH)_6Cl_2$.